
_ NASA-CR-196200

Knowledge Systems Laboratory

Report No. KSL 93-35

April1993

d,,7,-_

Architecture-driven Reuse of Code
in KASE

by

Sanjay Bhansali

(NASA-CR-194200)

ARCHITECTURE-DRIVEN REUSE

IN KASE (Stanford Univ.)
OF CODE

9p

N94-13356

Unci as

G3/61 0182779

KNOWLEDGE SYSTEMS LABORATORY
Department of Computer Science

Stanford University
Stanford, California 94305

Work supported in part by NASA grant NCC 2-749-1
_t

Architecture-driven Reuse of Code in KASE

Sanjay Bhansali
Knowledge Systems Laboratory

Computer Science Department, Stanford University
701 Welch Road, Building C

Palo Alto, CA 94304
bhansali@ksl.stanford.edu

Abstract

In order to support the synthesis of large, complex software
systems, we need to focus on issues pertaining to the
architectural design of a system in addition to algorithm and dam

structure design. In this paper, we present an approach that is
based on abstracting the architectural design of a set of problems
in the form of a generic architecture, and providing tools that

can be used to instantiate the generic architecture for specific
problem instances. Such an approach also facilitates reuse of
code between different systems belonging to the same problem
class. We describe an application of our approach on a realistic
problem, present the results of the exercise, and discuss how our

approach compares to other work in this area.

1. Introduction

Until recently most research in providing automated
support for software synthesis has focused on issues
concerned with the synthesis of algorithms and data
structures (e.g. (Barstow, 1979; Smith, 1990)) It is now
being realized that in order to support the synthesis of
large, complex systems, we also need to focus on design
problems that go beyond the level of algorithms and data
structures (Bhansali & Nii, 1992b; Graves, 1991; Lubars,
1991; Mettala, 1990; Shaw, 1990). This has been called
the architectural level of design. In the KASE
(Knowledge Assisted Software Engineering) project we
have developed an approach for providing automated
support to a software designer in designing software
systems at the architectural level. In brief, our approach
can be described as follows: (1) _ibstract a set of different
problem instances as a problem class (2) abstract the
design of software systems for the various problem
instances of a problem class as a generic architecture(3)
corresponding to each generic architecture/problem class
pair create a body of rules (called customization
knowledge) that describes how the generic architecture
can be customized for specific instances of the problem
class, and (4) build a set of generic tools that can assist a
software designer in the customization process.

We have described and demonstrated the feasibility of this
approach in the design of two different systems using a
common blackboard-based generic architecture for
tracking(Bhansali & Nii, 1992a; Bhansali & Nii, 1992b).
Our experience with the tracking domain showed that the
KASE approach is a promising one for capturing design
knowledge and reusing it to design new systems more

efficiently and with fewer errors due to omission. The
output of the customization process is a specification of
the various components of the architecture which has to
be transformed to code.

In this paper we describe an exercise in applying the
KASE approach to another application with an executable
system being the final output. We were motivated in this
exercise by both academic and pragmatic reasons.
Academically, we were interested in investigating (1) how
our approach generalizes to a different application
domain, and (2) how reuse at the architecture level
enables reuse of code leading to efficient synthesis of
solutions for new problem instances. This application
differed from the previous one because we already had
available a considerable amount of code for several
problem instances and we were interested in reusing that
code.

The exercise was also of pragmatic interest to us because
the application that we chose is a subsystem of KASE
itself. Our objective was to use KASE to help us maintain
and modify that subsystem more efficiently. KASE
contains tools that provide diagrammatic representation of
a software system from different perspectives. Figure 1
shows examples of the output generated by some of these
diagramming tools. Frequently we need to add new kinds
of diagramming capabilities which may be specific to a
particular domain (e.g. in a blackboard architecture, it is
useful to be able to depict the interaction between a class
of modules, called knowledge sources, and events that
trigger them, in the form of a diagram). Or, a designer
may want to create a diagram that shows a new
perspective of an architecture (e.g. a diagram that shows
both the control flow and data flow between processes).

Due to historical reasons the various diagramming tools
were written by different members of the KASE project
(mostly graduate students). These tools differed
considerably in the implementation details (e.g. the layout
algorithm used) although they all shared a common data
structure for representing the architectural components. In
creating new kinds of diagrams we noticed that almost all
the functionality that was needed was already available (a
lot of the functionality was duplicated!) in the existing
code. However, considerable effort was being expended
in extracting the right pieces of code, modifying them,
and putting them together to create a new tool. Moreover
we had to rely solely on one programmer who knew the
implemenuuion details of the various pieces of software.

:a)Module
decomposition

diagram

(b) Control flow
diagram

u

i

(c) Action Diagram

(d) Structure and Data dependency diagram

(e) State transition diagram

Figure 1. Examples of some diagrams generated
by the graphical interface in KASE.

This is, of course, the classical maintenance problem in
software engineering. Our goal was to explicitly represent
the knowledge about the design of these systems in KASE
and use that to maintain the code in future.

I. I Overview of KASE

Figure 2 illustrates the major building blocks as well as
the main steps in the design process in KASE. The
shadowed boxes represent knowledge components that are
part of KASE. A designer initiates the design process by

fast selecting a generic architecture from a library based
on the problem class for his particular problem and the
desired soludon features. Associated with a problem-class
is a problem-class model which consists of generic terms
pertaining to the problem class. The designer has to
specify his particular problem by instantiating an abstract
problem description using the generic terms from the
problem-class model. The design process consists of an
interactive session in which the customization knowledge
associated with the generic architecture/problem class is
used to refine the generic architecture based on
requirements of the problem instance. Typically, during
the customization process KASE provides alternative
ways of customizing architectural parameters, offers
default suggestions and rationales for the suggestions,
maintains dependencies between various customization
actions, while the designer is responsible for choosing
appropriate values for the parameters based on his
requirements. Finally, KASE has a constraint checker that
may be used to check for the consistency of the design. A
detailed description of the various components and the
design environment in KASE is given elsewhere. Here,
we will only describe those aspects of KASE that are
related to our application problem.

2. Abstracting the Problem Description:
Problem Class Model

A problem description is obtained by abstracting out the
common features of a set of problems. This results in the
creation of a concise, general problem specification which
can be extended to create specifications for particular
problems.

Analyzing the different diagrams in Figure 1, we observe
that all of them essentially layout a set of objects, with
the topological arrangements of the objects and the
connecting lines symbolizing certain relationships
between them. Also, except for the action diagram all the
layouts show at most two binary relationship between the
objects. The action diagram is designed to show the
sequence of control flow within a procedure. It contains
layout constructs to show control constructs like
sequencing, conditional branches, loops, etc. in addition
to the input-output dataflow and the nesting of
procedures. We decided to ignore the action diagram from
our problem class which resulted in a concise abstract
specification for all the remaining diagramming problems.
An abstract problem class is represented in terms of the
inputs and outputs of the problems, a set of parameters
that need to be instantiated for specific problem instances
and a set of constraints that specify additional properties
of the parameter values. The problem class for our
diagramming problems is represented as follows:

Problem Class: Genetic-Diagramming-Problem (GDP)

Inputs:- x :'_1 : input is any object of type't l

Problem
class

Solution

features

User

Select

Libraryof
generic

architectures
(&modules)

Customization
knowlexlgo

I

j Design

Generic Iarchitecture

recta- Domain
model model

User

KASE provided User created O Process

Specific
architectul'¢

+
Constraint
Checker

Figure 2. Overview of software design in KASE

Problem parameters:-

l) 'el : type ; type of the input object

2) 'co :type ,'type of objects to be shown in the layout

3) O : ('el -> set(_o)) ,' a lambda expression that takes
as input an object of type "Cland returns a set of objects of
type "co

4) RI: set('co) -> set(['co ,'co]) ; a lambda expression
that takes as input a set of objects of type "Coand returns
a set oforderedpairs ['co ,'co]

5) R2: set('co) -> set(['co ,Xo]) ; another lambda
expression to compute a second set of ordered pairs
defining another relation on the objects "Co•

Parameter constraints:- None

Output:- w :KEE-picture-window

Postcondition:- contains-layout(w,layout(O,R l(O(x)),
R2(O(x))))

Annotation: "Given <O, R1. R2> where O is a set of
objects, R1 and R2 are binary relations on objects in O,
draw a layout diagram that shows the objects in O and the
relations R1 and R2 between the objects."

The abstract problem descriptions are used as indices to a
library of generic architecture-level designs for problem
classes. The English annotations attached to problem
classes help a user in determining the appropriate problem
class for his problem. In general, there may be more than
one architecture that can be used to solve a problem. Each
architecture is characterized by certain properties

determining the nature of the solution (for example, a
tracking problem may be solved by a statistical analysis oI
the data or a symbolic interpretation - the architectures for
the two solutions would be quite different). These
properties are called solution features of the architecture
and are used to select among different architectures for a
problem. For the generic-diagramming-problem v,c
created just one architectural solution and so the solution
features are not needed.

Once a problem class is selected by a user she has to
specify her problem as an instance of the problem class
Thus, for the GDP example, the user has to specify the
type of an input object (these are the objects on which a
user can click at run-time to request the specified
diagram), methods to determine the set of objects to bc
shown on the layout, methods to compute the relations R I
and R2 between the objects in the set, and any additional
properties of the parameters that may help in determining
an appropriate diagram for the problem. In order to assist
a user in specifying individual problems belonging to a
problem class, a domain theory is built which contains a
collection of generic concepts which can be used to
formulate problem instances. The collection of generic
concepts may be viewed as a model for an abstract
domain formed by abstracting a set of different problem
domains, and is, therefore, termed a problem-class model

The development of a problem-class model begins by
defining the terms used in the abstract problem
description. The terms used in the GDP description are
object, binary-relati0n,and layout. An object is any element
in the universe and a binary-relati0n is defined
mathematically as an ordered pair of objects. The

definitions of terms typically introduces new terms which
have to be further defined.

Definition. A layout is a diagram consisting of nodes and
connections between the nodes.

Definition. A node is a primitive shape, e.g. a point, a

circle, or a rectangle.
Definition. A connection is either an edge-connection
between two nodes or a topological-connectionbetween
them.

Examples of topological-connection are nesting and
tiering (Figure 3). Instances of edge connections include
undirected lines, directed-lines, and directed arcs. The
various terms identified in this manner are organized in a
class hierarchy. Figure 4 shows part of this class hierarchy
for the GDP domain. Also associated with each object in

the problem-class model is a set of operations that are
permissible on that object. For example, an object may be
created, deleted, or renamed. A node may be moved to
another location or reshaped. The operations and
attributes are typically defined in terms of more general
objects and are inherited by objects that are subclasses of
the general object.

The terms in the problem-class model also provide the
vocabulary for formulating the rules that constitutes the
customization knowledge for the generic architecture.
Thus, the problem-class model serves to bridge the gap
between a problem specification and the generic
architecture. Section 4 gives examples of customization
rules for the GDP domain.

3. Abstracting the solution : Generic
Architecture

Just as a problem class is an abstraction of a set of
problem instances, a generic architecture is an abstraction
of the solutions for a set of problems. It is obtained by
abstracting the common features from the solutions of
problems that are instances of a problem class. Figure 5

(a) Nestin$ (b) Tiering

Figure 3. Examples of topological connections. (a)
Nesting: A box A nested inside another box B
represents a relation between A and B. (b) Tiering:
A box to the right and below a box B represents a
relation between A and B.

shows a generic architecture, in terms of the top-level
modules obtained by abstracting the common features
from the solutions of problems that are instances of a
problem class. Figure 5 shows a generic architecture, in
terms of the top-level modules, for the GDP problem
class. The generic architecture consists of 7 main
modules. The m-Diagram-Manager is the top-level module

which keeps track of all active windows and the contents
of that window, and interacts with the m-Editor

Subsystem (not shown in the figure) of KASE as well as
with the end-user. The m-Oiagram-Fledisplayer module is

responsible for detecting and updating the contents of the
various windows based on the inputs received from the m-

EditorSubsystem. Thus, if a user modifies a component of

a system, the m.0iagram-Redisplayer will automatically

gray over and then re-display all those windows which
contain that component. The m-Manipulate-Wind0ws
module contains procedures that manipulate an entire
window. For example, operations that move, reshape, or
close a window are provided by this module. The m-

Manipulate-Diagrams module contains code that is

responsible for manipulating the individual objects
displayed in a window. The functionality of this module is
divided into two modules: (1) m-Create-Diagram, which is

symmetric-relation_

object //transitive-relation partially-ordered _totally-ordered

relation _binary-relation _ reflexive-relation

"_ anti-symmetric equivalence
covering-relation

node < point-node
box-node

_ circle
rectangle
ellipse

/topological-connection _ tn:_ngg

connection _ undirected-line

edge-connection _dii:_e_tec_rl_c e

Figure 4. Generic concepts for the GDP domain,

l II

[RedisplayexI I-Wma°ws _ J]

I!Layout

Figure 5. Generic architecture for the GDP problem
class. The boxes with double outlines indicate
customizable modules. In KASE customizable
modules are shown highlighted.

responsible for determining the initial layout (m-Create-

Layout) and displaying it in a window; and (2) m-Edit-
Diagram, which displays the menu of available edit actions
that can be performed on the individual objects.

In KASE, a module is represented as an object with a set
of attributes. Figure 7 shows the minimal set of attributes
for each module. Attributes that are preceded by an * are
derived attributes whose values are computed from the
primitive attributes (e.g., the input to a module is simply
the set of data-types that form arguments to procedures
provided by the module and the results of procedures
required by the module). A module interface is defined in
terms of the resources (procedures and data) that it
provides to other modules, and the resources it requires
from other modules. The other attributes constrain the
way a system is structured and the way modules
communicate with each other. For example, a module
may only use resources provided by its submodules or a
module that it has access to.

MODULE

supermodule
submodules

provides
requires
has-locally
has-access-to

module that contains this module
modules contained within this
module

resources provided by this module
resources required by this module
local resources

modules which can provide
resources to this module

*inputs data flow into the module
*outputs data flow out of the module
*calls modules called by procedures within

this module
*called-by modules that call procedures

provided by this module

Figure 6. Minimal internal representation of a module.

A generic module contains an abstract data type whose
operations are specified (similar to the notion of generic
packages in ADA), or an abstract procedure specified in
terms of the inputs, outputs, preconditions, and
postconditions of the procedure, or a program template
that needs to be refined. For example the module m-
create-layout contains the specification of a procedure: p-
determine4ayoul(v,e, w) that takes a set of vertices v, edges

(pairs of vertices) e, and a window w, and displays the
graph of vertices and edges in the window. Different
layout algorithms that take a set of vertices and edges and
create a layout on a window are collected in a library
indexed by a customization rule. During customization
this rule is used to retrieve this set of different algorithms
and depending upon her requirements the user selects one
of them. It is also possible to store formal descriptions of
library routines using pre--conditions and postconditions
and have a theorem-prover that automatically classifies
and retrieves all routines whose pre. and post-conditions
match those of the generic module. Such an approach has
been used in other systems (Mark,Tyier,McGuire, &
Schlossberg, 1992).

Customizing an architecture refers to the process of
customizing each of its generic modules. KASE provides
active support to a user in customizing an architecture by
providing a list of customization actions that need to be
performed for each module, suggesting ways for doing the
customization, and providing rationales for its
suggestions. The knowledge for providing this support is
represented as customization knowledge for each generic
architecture.

4. Customization Knowledge

The customization knowledge is represented as a tune (P,
C, A, S, R, D) attached with each customizable parameter
of the architecture, where:

. P is the name of the customization parameter
. C is an annotation in English explaining the role of the

parameter
• A is a pointer to a set of rules that may be used in

computing various alternatives for instantiating the
parameter

. S is a rule that is used to suggest a default value for the
parameter.

• R (optional) is a rationale that may be entered by a
designer when a particular parameter value is chosen, and

v

• D is a list of other customization parameters or
problem requirements upon which the value of this
parameter depends.
An example of a customization tuple is the following:

P - layout-algorithm
C - "The algorithm used to determine the layout of nodes
and their connections."
A - Rules for layout alternatives (see below)
S - Rule for determining default layout algorithm (see
below)
D- Constraints(R I), Consmaints(R2)
The type of layout algorithm to be used depends on the
properties of the relations R1 and R2 in the problem
specification. Examples of some rules that are used to
suggest alternatives for a layout algorithm are the
following:

Rule: If RI is neither reflexive nor irreflexive, and R2 is
empty then the tree algorithm or the nested algorithm
cannot be used (because those algorithms do not permit
self-loop on nodes).

Rule: If R1 is not a partial order or the length of the
longest chain is greater than 3, then the nested algorithm
cannot be used.

Rule: If R1 is a one-to-many relation and R2 is irreflexive
or reflexive, then use a combination of nested and nearest-
neighbor algorithm. (R1 is depicted by nesting and R2 by
using the nearest neighbor algorithm).

These rules are used in conjunction with the specification
of a problem instance to determine the set of possible
layout algorithms for the problem instance. The set of all
layout algorithms that have not been ruled out by the
above rules then becomes the set of available alternatives.

The user can ask KASE to provide default suggestions on
the best algorithm to use. The default rule (S) is used to
determine the best layout algorithm based on the problem
requirements:

Rule: If there is only one alternative available, choose
that; else if both nearest neighbor and tiered are available
then if the number of edges are likely to be large use
tiered, else nearest neighbor, else ...

It is possible that a problem specification is not
completely specified for KASE to be able to determine
the best layout. In that case, KASE prompts the user for
the missing requirements. Thus, in the above example,
KASE would prompt the user for an estimate about the
number of edges expected for a particular relation. This
information is recorded as part of the problem
specification and together with the customization rule
serves as a documentation for the design.

Once a suggested value for a customization parameter has
been given, a designer has 3 options. 1) Choose the
suggested value for the parameter. KASE will instantiate
the customization parameter and mark it as being

customized. 2) Ignore the suggested value and use one of
the other alternatives presented earlier. KASE then
prompts the user to provide a rationale for that choice.
The rationale (a text string) is entered and stored along
with the customization parameter (R). This rationale
serves as a design documentation which can be used by
future maintainers to understand why a particular design
choice was made. It can also be used to refine the set of
customization rules. 3) Introduce a new kind of layout
algorithm. In such a situation, KASE will inform the user
that the user has to provide the code for such an
algorithm. The code would have to conform to the
specifications of a layout algorithm in terms of the inputs,
outputs, preconditions, and postconditions.

The last field of the customization tuple is used by KASE
to determine what parts of an architectural design need to
be reconsidered when there are changes in requirements
or when a designer retracts her decision on one of the
customization parameters. In the above example, the
customization parameter depends on the properties of the
relations R1 and R2 of a particular problem instance. But
in general, they can also be other customization
parameters. For example, one of the customization
parameters in the m-create-diagrammodule is the shape of
the nodesto be used.The value of this parameterdepends
on the layout algorithm used(e.g. for a nestedlayout only
rectanglescanbe usedto representnodes).

5. Constraint Checking

As remarked earlier, it is possible for a designerto ignore
the customizationknowledge and the suggestionsoffered
by KASE and manually customizethe architecture. This
may introduce errors in the design. Most design tools
containdomain-independentconstraintsto check for the
syntactic consistencyof a design (e.g., each module has at
least one input and output, a named procedure is not
providedby two different modules). KASE contains, in
addition to these, architecture-specific constraints that
check for the semantic consistencyof the final design.
These constraints ate represented independendy in a
Constraint Checker subsystem (Fig. 2). For example, the
dependency between customization parameters mentioned
earlier is specifiedas the following constraint in KASE:

Parameter(m-Create.Layout, layout-algorithm) = nested
=> Parameter(m-Create-Layout, node-shape) =
rectangle

(If the layout-algorithm in module m-Create-Layout has
been specified as nested, then the node-shape must be a
rectangle.)

We have developed a representation scheme for
representing and classifying these constraints in KASE.
(For details see (Nakano, 1993)). At any stage in the
design process, KASE can ask a user to cheek for the
consistency of the design with respect to a set of
constraints. KASE computes all the constraints that are

violated, groups them under the various categories, and
presents them to the user. The user then has to initiate
design actions to remove the conswaint Violations.

6. Results

Once the customization process is completed and no
constraint violations are detected by KASE, a designer
can ask KASE to generate code for his problem. KASE
uses the values of the customized parameters to instantiate
the set of generic procedures in all the modules of the
architecture. The set of all instantiated procedures
constitutes the solution to the problem instance. For
procedures that were customized manually the designer
has to provide the relevant code.

We have used several examples to produce new kinds of
diagramming tools by customizing the generic
diagramming architecture. The following is an example of
a problem specification which has been used to synthesize
a new diagramming tool in KASE:

Problem specification: Knowledge-sources and Events
diagram
Input:- x : '¢1
Parameters:-
"Ct : module

O : {k Iknowledge-source(k) & provides(x,k)} U
{e 13 k, knowledge-source(k) & event(e) &

event-posted(k,e) & provides(x,k) } U
{e 13 k, knowledge-source(k) & event(e) &

trigger(k,e) & provides(x,k)}
RI: {(k, e) Ievent-posted(k,e)} U {(e,k) I trigger(k,e)}
R2: {}

Parameter constraints: Irreflexive(R1) & Anti-
symmetric(R1)

(For readability we have provided a declarative
specification for the output of the lambda expression used
to instantiate the parameters O and R1. In practice the
user has to provide a lisp function that computes the
relevant sets.)

The input to the above problem is a module x. The objects
that need to be shown in the layout consist of all
knowledge-sources provided by the module x as well as
all events that are triggered or posted by the knowledge
sources. Only one binary relation R1 needs to be shown.
R1 is defined as follows: k R1 e ife is an event triggering
knowledge source k or ife is an event posted by k.

During customization the user has to provide the
following information:

1. The format of a menu item and conditions for its
invocation (i.e. those modules on which a user clicks to
get the menu item). This is used by m-Diagram-Manager
to update the relevant menus.

2. The layout algorithm to be used. (The default algorithm
suggested by KASE is the nearest-neighbor algorithm.)

3. The shapes of the graphical icon to be used for
depicting the knowledge-sources and events. The user can
specify addi_tionO properties for the icon, e.g. the size and
whether it is to be highlighted or not.

4. The kind of arc needed to show the relation between
knowledge sources and events (the default suggestion is a
directed arrow since the relation is not symmetric.) In
addition, specification of other properties like whether the
arc should be labeled or not, the format of the label, etc.
are also partofthe customization.

5. The kinds of editing to be allowed on the objects (The
user has to provide the code to modify the internal data
structure of knowledge-sources and events while KASE
automatically generates the code interfacing it to the m.
Diagram-Manager.)

The visible effects of the execution is the appearance of a
new menu item when the appropriate objects are clicked.
Upon selecting the new item, KASE uses the newly
generated code to draw a new kind of diagram.

We have been using the generic architecture for the GDP
domain to synthesize several different diagrams at a
significantly increased efficiency than before. Moreover,
other project members besides the assigned programmer
have been able to generate new kindsofdiagrams. We
believe that this exercise has been useful in showing that
it is possible to reduce the maintenance burden on
programmers by using the KASE approach.

7. Discussion and Related Work

There are several papers that describe systems that help
users in designing user interfaces for an underlying
application. Some of the systems use a rule-based
approach like KASE to establish the mapping between
application objects and displayed objects or widgets (e.g.
(Bennet,Boies,Gould,Greene, & Wiecha, 1989)). These
systems are aimed at general, application-independent
techniques for building user interfaces. In our work, we
were interested in generating graphical displays for a
restricted application since the focus of our research is
primarily in software reuse, and not in user interface
technology.

KASE is based on a framework for developing soRware
systems in which generic architectures are the
fundamental unit of reuse. In this respect our work is
related to the Domain-Specific Software Architecture
(DSSA) project. However, as far as we know, KASE is
the first system that has(I) demonstrated how the
concepts of software architectures, domain models, and
software synthesis can be integrated in a unified
framework, and (2) shown the applicability of the
framework in the design of two different systems based
on generic architectures in two different application
domains.

The idea of constructingsoftware systems by first

capturinga model ofa classofsystemswas fastpresented
in a system called Draco (Neighbors, 1984). KASE
speciaLizesthe Draca approach by defininga domain in

termsofa problem-classfora genericarchitecture.

KASE isalsorelatedtoapplicationgeneratorswhich seek

toautomate thesynthesisof components withina narrow

applicationdomain. Application generators may be
thoughtof as high-levelcompilersfornarrow.spectrum,

application-specificlanguages. They are well suited.for

domains where a set of requirements can be easily

expressedinsome simple,high-levellanguage.However,
since the knowledge about the applicationdomain is

embedded in the macros and interpretersof the

applicationgenerator and the compilation process is

transparenttoan end-user,itisdifficulttoadaptthem for

differentapplication.In KASE, the knowledge for

customizingan architectureisrepresentedexplicitlyas
rulesand methods which makes itmuch more flexible

thanapplicationgenerators.

On the other hand, itseems to indicatethatthe KASE

approach isnot appropriatefor allproblem classes.Its

utilitydepends criticallyon thecomplexity of acquiring
and representingthe relevantcustomizationknowledge

and ensuring itscorrectness.At one extreme, thereate

classesof problems thatate well understood and for

which the customizationknowledge would bc relatively

complete and correct.In such domains an application

generatorapproach would be more efficientthanKASE.

On theotherextremeateentirelynew classesofproblems
forwhich littleisknown regardingthedesignprocess.In

such domains, the customizationknowledge would be

very sparseand KASE could not offermuch assistance

beyond thatofferedby the currentCASE technology.
Thus, itseems that KASE would be most usefulfor

domains thatliebetween thesetwo extremes.

A closelyrelatedprojectto KASE isLEAP (Graves,

1991) which also uses architecturesas a basis for

synthcsizingsystemsand relicson an interactivedesigner

tosynthesizea specificsystem.However, inLEAP there

isno explicitrepresentationof a model for a classof

problems.Consequendy, thecustomizationknowledge in
LEAP isnot asrichas inKASE; on theotherhand LEAP

isable to learn the relevantrulesdynamically during
design.

8.Conclusions

We have presentedan approach tosoftwarereusethatis
basedon abstractingthedesignofa classof problemsasa

genericarchitecture.Such an approach providesreuseat
thelevelofentiresystemsinadditiontoreuseatthe level

ofalgorithmsorsubroutines.

We have demonstrated the practicalutilityof our

approach by being able tosuccessfullyreusethe design

knowledge aswellascode fora setofproblems insolving

new problem instancesina realisticand usefuldomain.

We are currentlyapplying KASE to model another
applicationconcerned with the analysisof radiosignals

obtainedfrom planetarymissions.This applicationwill

enable us to get empiricalevidence on the usabilityof
KASE by usersoutsidetheKASE group.

Acknowledgment

This researchwu supportedinpartby a grantfrom NASA
Ames Research Center. Nelleke Aiello was primarily

responsibleforimpltmaentingthecuswmizationknowledgefor
domain.E.Parta,G.Nakano,and R.Guindoncontributedin

implementing the various layout diagrams.

References

Barstow, D. (1979). Knowledge based program
construction. New York: Elsevier North Holland.

Bennet, W.,Boies, &,Gould, J.,Greene, S., & Wiecha, C.
(1989). Transformations on a Dialog Tree: Rule-Based
Mapping of Content to Style. In Proc. of the ACM
SIGGRAPH Symposium on User Interface Software
and Technology, (pp. 67-75). Williamsburg, VA:

Bhansali, S., & Nii, H. P. (1992a). KASE: An integrated
environment for software design. In 2nd International
Conference on Artificial Intelligence in Design.
Pittsburgh, PA:

Bhansali, S., & Nil, H. P. (1992b). Software Design by
Reusing Architectures. In 7th Knowledge-Based
Software Engineering Conference. McLean, Virginia:

Graves, H. (1991). Lockheed Environment for Automatic
Programming. In 6th Annual Knowledge-Based
Software Engineering Conference, (pp. 78-89)
Syracuse,NY:

Lubars, M. D. (1991). The ROSE-2 Strategies for

SupportingHigh-levelSoftware Design Reuse. In M

R. Lowry & R. D. McCartney (Eds.),Automating

Software Design AAAI Press/The MIT Press.

Mark, W.,Tylet, S.,McGuire, J., & Schlossberg, J. (1992)

Commitment Based Software Development. IEEE
Trans. on Software Engineering, 18(10), 870-885.

Mettala, E. (1990). Domain Specific Software
Architectures Unpublished report.

Nakano, G. (1993). Consistency Maintenance mechanism
in]CASE. In Sixth Annual Florida AI Research
Symposium (FLAIRS-93). Ft. Laudcrdale,Florida:

Neighbors, J. (1984). The DRACO approach to
constructing software from reusable components. IEEE
Transactions on Software Engineering, 10(9), 564-573.

Shaw, M. (1990). Toward higher-level abswactions for
software systems. Data & Knowledge Engineering, 5.
119-128.

Smith, D. R. (1990). KIDS: A semi-automatic program
development system. IEEE Transactions on Software
Engineering, 16(9), 1024-1043.

